Robust Ensembling Network for Unsupervised Domain Adaptation

نویسندگان

چکیده

Recently, in order to address the unsupervised domain adaptation (UDA) problem, extensive studies have been proposed achieve transferrable models. Among them, most prevalent method is adversarial adaptation, which can shorten distance between source and target domain. Although learning very effective, it still leads instability of network drawbacks confusing category information. In this paper, we propose a Robust Ensembling Network (REN) for UDA, applies robust time ensembling teacher learn global information transfer. Specifically, REN mainly includes student network, performs standard training updates weights network. addition, also dual-network conditional loss improve ability discriminator. Finally, purpose improving basic utilize consistency constraint balance error Extensive experimental results on several UDA datasets demonstrated effectiveness our model by comparing with other state-of-the-art algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-ensembling for domain adaptation

This paper explores the use of self-ensembling for visual domain adaptation problems. Our technique is derived from the mean teacher variant [20] of temporal ensembling [8], a technique that achieved state of the art results in the area of semi-supervised learning. We introduce a number of modifications to their approach for challenging domain adaptation scenarios and evaluate its effectiveness...

متن کامل

Self-ensembling for visual domain adaptation

This paper explores the use of self-ensembling for visual domain adaptation problems. Our technique is derived from the mean teacher variant [29] of temporal ensembling [14], a technique that achieved state of the art results in the area of semi-supervised learning. We introduce a number of modifications to their approach for challenging domain adaptation scenarios and evaluate its effectivenes...

متن کامل

Deep Transfer Network: Unsupervised Domain Adaptation

Domain adaptation aims at training a classifier in one dataset and applying it to a related but not identical dataset. One successfully used framework of domain adaptation is to learn a transformation to match both the distribution of the features (marginal distribution), and the distribution of the labels given features (conditional distribution). In this paper, we propose a new domain adaptat...

متن کامل

An unsupervised deep domain adaptation approach for robust speech recognition

This paper addresses the robust speech recognition problem as a domain adaptation task. Specifically, we introduce an unsupervised deep domain adaptation (DDA) approach to acoustic modeling in order to eliminate the training–testing mismatch that is common in real-world use of speech recognition. Under a multi-task learning framework, the approach jointly learns two discriminative classifiers u...

متن کامل

Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment

A novel approach for unsupervised domain adaptation for neural networks is proposed that relies on a metricbased regularization of the learning process. The metric-based regularization aims at domain-invariant latent feature representations by means of maximizing the similarity between domainspecific activation distributions. The proposed metric results from modifying an integral probability me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-89363-7_40